
Membrane Systems: An Introduction

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 7014700 Bucureşti, Romania, and

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Abstract. Membrane Computing (MC) is part of the powerful trend in
computer science known under the name of Natural Computing. Its goal
is to abstract computing models from the structure and the functioning
of the living cell. The present paper is a short and informal introduction
to MC, presenting the basic ideas, the central (types of) results, and the
main directions of research.

1 Membrane Computing – Starting From Cells

In the last decade, the continuous and mutually beneficial collaboration of in-
formatics with biology became simply spectacular. Two landmark examples are
the completion of the genome project, a great success of bio-informatics, of us-
ing computer science in biology, and the successful Adleman’s experiment (1994)
of using DNA molecules as a support for computing. The latter example is il-
lustrative for the direction of research opposite to the traditional one, of using
computers in biology: in Adleman’s experiment, biological materials and tech-
niques were used in order to solve a computational problem. This was the “official
birth certificate” of what is now called DNA Computing, and this gave a decisive
impulse to Natural Computing.

Membrane Computing is the youngest branch of Natural Computing. It starts
from the observation that one of the most marvellous machineries evolved by na-
ture are the cells. The cell is the smallest living unit, a microscopic “enterprise”,
with a complex structure, an intricate inner activity, and an exquisite relation-
ship with its environment. Both substances, from ions to large macromolecules,
and information are processed in a cell, according to involved reactions, orga-
nized in a robust and at the same time sensitive manner, having as the goal the
processes themselves, the life itself of the cell and of the structures where the
cells are included – organs, organisms, populations.

Thus, a double challenge emerged: to check whether or not the often made
statements about the “computations” taking place in a cell (see, e.g., [2] and
[3]) are mere metaphoras or they correspond to computations in the standard
(mathematical) understanding of this term, and, more ambitiously, having in
mind the encouraging experience of other branches of Natural Computing, to get



inspired from the structure and the functioning of the living cell and define new
computing models, possibly of interest for computer science, for computability
in general.

Membrane computing emerged as an answer to this double challenge, propos-
ing a series of models (actually, a general framework for devising models) in-
spired from the cell structure and functioning, as well as from the cell organi-
zation in tissue. These models, called P systems, were investigated as mathe-
matical objects, with the main goals being of a (theoretical) computer science
type: computation power (in comparison with Turing machines and their re-
strictions), and usefulness in solving computationally hard problems. The field
(founded in 1998; the paper [4] was first circulated on web) simply flourished
at this level. Comprehensive information can be found in the web page at
http://psystems.disco.unimib.it; see also [5].

In this paper we discuss only the cell-like P systems, whose study is much
more developed than that of tissue-like P systems or of neural-like P systems,
only recently investigated in more details.

In short, such a system consists of a hierarchical arrangement of membranes
(understood as three-dimensional vesicles), which delimits compartments (also
called regions), where abstract objects are placed. These objects correspond to
the chemicals from the compartments of a cell, and they can be either unstruc-
tured, a case when they can be represented by symbols from a given alphabet,
or structured. In the latter case, a possible representation of objects is by strings
over a given alphabet. Here we discuss only the case of symbol-objects. Cor-
responding to the situation from reality, where the number of molecules from
a given compartment matters, also in the case of objects from the regions of
a P system we have to take into consideration their multiplicity, that is why
we consider multisets of objects assigned to the regions of P systems. These
objects evolve according to rules, which are also associated with the regions.
The intuition is that these rules correspond to the chemical reactions from cell
compartments and the reaction conditions are specific to each compartment,
hence the evolution rules are localized. The rules say both how the objects are
changed and how they can be moved (we say communicated) across membranes.
By using these rules, we can change the configuration of a system (the multisets
from its compartments); we say that we get a transition among system configu-
rations. The way the rules are applied imitates again the biochemistry (but goes
one further step towards computability): the reactions are done in parallel, and
the objects to evolve and the rules by which they evolve are chosen in a non-
deterministic manner, in such a way that the application of rules is maximal. A
sequence of transitions forms a computation, and with computations which halt
(reach a configuration where no rule is applicable) we associate a result, for in-
stance, in the form of the multiset of objects present in the halting configuration
in a specified membrane.

All these basic ingredients of a membrane computing system (a P system)
will be discussed further below. This brief description is meant, on the one hand,
to show the passage from the “real cell” to the “mathematical cell”, as considered



in MC, and, on the other hand, to give a preliminary idea about the computing
model we are investigating.

It is important to note at this stage the generality of the approach. We start
from the cell, but the abstract model deals with very general notions: membranes
interpreted as separators of regions, objects and rules assigned to regions; the
basic data structure is the multiset; the rules are used in the non-deterministic
maximally parallel manner, and in this way we get sequences of transitions, hence
computations. In such terms, MC can be interpreted as a bio-inspired framework
for distributed parallel processing of multisets.

We close this introductory discussion by stressing the basic similarities and
differences between MC and the other areas of Natural Computing. All these ar-
eas start from biological facts and abstract computing models. Neural and Evo-
lutionary Computing are already implemented (rather successfuly, especially in
the case of Evolutionary Computing) on the usual computer. DNA Computing
has a bigger ambition, that of providing a new hardware, leading to bio-chips,
to “wet computers”. For MC it seems that the most realistic attempt for imple-
mentation is in silico (this started already to be a trend and some successes are
already reported) rather than in vitro (no attempt was made yet).

2 The Basic Classes of P Systems

We introduce now the fundamental ideas of MC in a more precise way. What we
look for is a computing device, and to this aim we need data structures, opera-
tions with these data structures, an architecture of our “computer”, a systematic
manner to define computations and results of computations.

Inspired from the cell structure and functioning, the basic elements of a
membrane system (P system) are (1) the membrane structure and the sets of (2)
evolution rules which process (3) multisets of (4) objects placed in the compart-
ments of the membrane structure.

A membrane structure is a hierarchically arranged set of membranes. A sug-
gestive representation is as in the figure from the next page. We distinguish the
external membrane (corresponding to the plasma membrane and usually called
the skin membrane) and several internal membranes (corresponding to the mem-
branes present in a cell, around the nucleus, in Golgi apparatus, vesicles, etc);
a membrane without any other membrane inside is said to be elementary. Each
membrane uniquely determines a compartment, also called region, the space
delimited from above by it and from below by the membranes placed directly
inside, if any exists.

In the basic class of P systems, each region contains a multiset of symbol-
objects, which correspond to the chemicals swimming in a water solution in a
cell compartment; these chemicals are considered here as unstructured, that is
why we describe them by symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. The rules correspond to
the chemical reactions possible in the compartments of a cell. The typical form



of such a rule is aad → (a, here)(b, out)(b, in)(b, in), with the following meaning:
two copies of object a and one copy of object d react and the reaction produces
one copy of a and three copies of b; the new copy of a remains in the same
region (indication here), one of the copies of b exits the compartment, going to
the surrounding region (indication out) and the others two enter one or two of
the directly inner membranes (indication in). We say that the objects a, b, b, b
are communicated as indicated by the commands associated with them in the
right hand member of the rule. When an object exits a membrane, it will go
to the surrounding compartment; in the case of the skin membrane this is the
environment, hence the object is “lost”, it never comes back into the system.
If no inner membrane exists (that is, the rule is associated with an elementary
membrane), then the indication in cannot be followed, and the rule cannot be
applied.

'

&

$

%

'

&

$

%

¾

½

»

¼
¾

½

»

¼

¶

µ

³

´

¶

µ

³

´

Â

Á

¿

À

¶

µ

³

´

¶

µ

³

´

­
­

­­À

@
@@R

¡
¡

¡¡ª

membrane

AAU

skin elementary membranemembrane

region

environment environment

©©*
HHHHHHHj

@
@

@@R

1 2

3

4
5

6

7

8

9

The communication of objects through membranes reminds the fact that
the biological membranes contain various (protein) channels through which the
molecules can pass (in a passive way, due to concentration difference, or in an
active way, with a consumption of energy), in a rather selective manner. The
fact that the communication of objects from a compartment to a neighboring
compartment is controlled by the “reaction rules” is attractive mathematically,
but not quite realistic from a biological point of view, that is why there also
were considered variants where the two processes are separated: the evolution is
controlled by rules as above, without target indications, and the communication
is controlled by specific rules (by symport/antiport rules – see below).

A rule as above, with several objects in its left hand member, is said to be
cooperative; a particular case is that of catalytic rules, of the form ca → cx, where
a is an object and c is a catalyst, appearing only in such rules, never changing.
A rule of the form a → x, where a is an object, is called non-cooperative.

The rules associated with a compartment are applied to the objects from
that compartment, in a maximally parallel way: all objects which can evolve by
means of local rules should do it (we assign objects to rules, until no further



assignment is possible). The used objects are “consumed”, the newly produced
objects are placed in the compartments of the membrane structure according
to the communication commands assigned to them. The rules to be used and
the objects to evolve are chosen in a non-deterministic manner. In turn, all
compartments of the system evolve at the same time, synchronously (a common
clock is assumed for all membranes). Thus, we have two layers of parallelism,
one at the level of compartments and one at the level of the whole “cell”.

A membrane structure and the multisets of objects from its compartments
identify a configuration of a P system. By a non-deterministic maximally parallel
use of rules as suggested above we pass to another configuration; such a step
is called a transition. A sequence of transitions constitutes a computation. A
computation is successful if it halts, it reaches a configuration where no rule can
be applied to the existing objects. With a halting computation we can associate
a result in various ways. The simplest possibility is to count the objects present
in the halting configuration in a specified elementary membrane; this is called
internal output. We can also count the objects which leave the system during
the computation, and this is called external output. In both cases the result
is a number. If we distinguish among different objects, then we can have as
the result a vector of natural numbers. The objects which leave the system
can also be arranged in a sequence according to the moments when they exit
the skin membrane, and in this case the result is a string. This last possibility
is worth emphasizing, because of the qualitative difference between the data
structure used inside the system (multisets of objects, hence numbers) and the
data structure of the result, which is a string, it contains a positional information,
a syntax.

Because of the non-determinism of the application of rules, starting from an
initial configuration, we can get several successful computations, hence several
results. Thus, a P system computes (one also uses to say generates) a set of
numbers, or a set of vectors of numbers, or a language.

Of course, the previous way of using the rules from the regions of a P system
reminds the non-determinism and the (partial) parallelism from cell compart-
ments, with the mentioning that the maximality of parallelism is mathematically
oriented (rather useful in proofs); when using P systems as biological models,
this feature should be replaced with more realistic features (e.g., reaction rates,
probabilities, partial parallelism).

An important way to use a P system is the automata-like one: an input
is introduced in a given region and this input is accepted if and only if the
computation halts. This is the way for using P systems, for instance, in solving
decidability problems.

We do not give here a formal definition of a P system. The reader interested in
mathematical and bibliographical details can consult the mentioned monograph
[5], as well as the relevant papers from the web bibliography mentioned above.
Of course, when presenting a P system we have to specify: the alphabet of
objects, the membrane structure (usually represented by a string of labelled
matching parentheses), the multisets of objects present in each region of the



system (represented by strings of symbol-objects, with the number of occurrences
of a symbol in a string being the multiplicity of the object identified by that
symbol in the multiset represented by the considered string), the sets of evolution
rules associated with each region, as well as the indication about the way the
output is defined.

Many modifications/extensions of the very basic model sketched above are
discussed in the literature, but we do not mention them here. Instead, we only
briefly discuss the interesting case of computing by communication.

In the systems described above, the symbol-objects were processed by multi-
set rewriting-like rules (some objects are transformed into other objects, which
have associated communication targets). Coming closer to the trans-membrane
transfer of molecules, we can consider purely communicative systems, based on
the three classes of such transfer known in the biology of membranes: uniport,
symport, and antiport (see [1] for details). Symport refers to the transport where
two (or more) molecules pass together through a membrane in the same direc-
tion, antiport refers to the transport where two (or more) molecules pass through
a membrane simultaneously, but in opposite directions, while the case when a
molecule does not need a “partner” for a passage is referred to as uniport.

In terms of P systems, we can consider object processing rules of the following
forms: a symport rule (associated with a membrane i) is of the form (ab, in)
or (ab, out), stating that the objects a and b enter/exit together membrane i,
while an antiport rule is of the form (a, out; b, in), stating that, simultaneously,
a exits and b enters membrane i. A natural generalization is to move more than
two objects simultaneously, for instance, considering antiport rules of the form
(x, out; y, in), where x, y are arbitrary multisets of objects.

A P system with symport/antiport rules has the same architecture as a sys-
tem with multiset rewriting rules: alphabet of objects, membrane structure, ini-
tial multisets in the regions of the membrane structure, sets of rules associated
with the membranes, possibly an output membrane – with one additional compo-
nent, the set of objects present in the environment. This is an important detail:
because by communication we do not create new objects, we need a supply of
objects, in the environment, otherwise we are only able to handle a finite popu-
lation of objects, those provided in the initial multiset. Also the functioning of a
P system with symport/antiport rules is the same as for systems with multiset
rewriting rules: the transition from a configuration to another configuration is
done by applying the rules in a non-deterministic maximally parallel manner,
to the objects available in the regions of the system and in the environment, as
requested by the used rules. When a halting configuration is reached, we get a
result, in a specified output membrane.

3 Computational Completeness; Universality

As we have already mentioned, many classes of P systems, combining various
ingredients as those described above, are able to simulate Turing machines, hence
they are computationally complete. Always, the proofs of results of this type are



constructive, and this have an important consequence from the computability
point of view: there are universal (hence programmable) P systems. In short,
starting from a universal Turing machine (or an equivalent universal device),
we get an equivalent universal P system. Among others, this implies that in the
case of Turing complete classes of P systems, the hierarchy on the number of
membranes always collapses (at most at the level of the universal P systems).
Actually, the number of membranes sufficient in order to characterize the power
of Turing machines by means of P systems is always rather small.

We only mention here two of the most interesting universality results:

1. P systems with symbol-objects with catalytic rules, using only two catalysts
and two membranes, are universal.

2. P systems with symport/antiport rules of a rather restricted size (example:
three membranes, symport rules with two objects each and no antiport rules,
or only minimal symport and antiport rules) are universal.

We can conclude that the compartmental computation in a cell-like mem-
brane structure (using various ways of communicating among compartments) is
rather powerful. The “computing cell” is a powerful “computer”.

4 Computational Efficiency

The computational power is only one of the important questions to be dealt
with when defining a new computing model. The other fundamental question
concerns the computing efficiency. Because P systems are parallel computing
devices, it is expected that they can solve hard problems in an efficient manner –
and this expectation is confirmed for systems provided with ways for producing
an exponential workspace in a linear way. Three main such possibilities have
been considered so far in the literature, and all of them were proven to lead to
polynomial solutions to NP-complete problems: membrane division, membrane
creation, and string replication. Using them, polynomial solutions to SAT, the
Hamiltonian Path problem, the Node Covering problem, the problem of inverting
one-way functions, the Subset-sum, and the Knapsack problems were reported
(note that the last two are numerical problems, where the answer is not of the
yes/no type, as in decidability problems). Details can be found in [5], [6], as well
as in the web page of the domain.

Roughly speaking, the framework for dealing with complexity matters is that
of accepting P systems with input: a family of P systems of a given type is con-
structed starting from a given problem, and an instance of the problem is in-
troduced as an input in such systems; working in a deterministic mode (or a
confluent mode: some non-determinism is allowed, provided that the branching
converges after a while to a unique configuration), in a given time one of the an-
swers yes/no is obtained, in the form of specific objects sent to the environment.
The family of systems should be constructed in a uniform mode (starting from
the size of instances) by a Turing machine, working a polynomial time.



This direction of research is very active at the present moment. More and
more problems are considered, the membrane computing complexity classes are
refined, characterizations of the P 6=NP conjecture were obtained in this frame-
work, improvements are looked for. An important recent result concerns the fact
that PSPACE was shown to be included in PMCD, the family of problems
which can be solved in polynomial time by P systems with the possibility of
dividing both elementary and non-elementary membranes [7].

5 Concluding Remarks

This paper was intended as a quick and general introduction to Membrane Com-
puting, an invitation to this recent branch of Natural Computing.

The starting motivation of the area was to learn from the cell biology new
ideas, models, paradigms useful for informatics – and we have informally pre-
sented a series of details of this type. The mathematical development was quite
rapid, mainly with two types of results as the purpose: computational universal-
ity and computational efficiency. Recently, the domain started to be used as a
framework for modelling processes from biology (but also from linguistics, man-
agement, computer graphics, etc.), and this is rather important in view of the
fact that P systems are (reductionistic, but flexible, easily scallable, algorithmic,
intuitive) models of the whole cell; modelling the whole cell was often mentioned
as an important challenge for the bio-computing in the near future – see, e.g., [8].

We have recalled only a few classes of P systems and only a few (types of)
results. A detailed presentation of the domain is not only beyond the scope of this
text, but also beyond the dimensions of a monograph; furthermore, the domain
is fastly emerging, so that, the reader interested in any research direction, a more
theoretical or a more practical one, is advised to follow the developments, for
instance, through the web page mentioned in Section 2.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell, 4th ed., Garland Science, New York, 2002.

2. D. Bray, Protein Molecules as Computational Elements in Living Cells. Nature, 376
(July 1995), 307–312.

3. S. Ji, The Cell as the Smallest DNA-based Molecular Computer, BioSystems, 52
(1999), 123–133.

4. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

5. Gh. Păun, Computing with Membranes: An Introduction, Springer, Berlin, 2002.

6. M. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de la Comple-
jidad en Modelos de Computatión Celular con Membranas, Kronos, Sevilla, 2002.



7. P. Sosik, The Computational Power of Cell Division in P Systems: Beating Down
Parallel Computers? Natural Computing, 2, 3 (2003), 287–298.

8. M. Tomita, Whole-Cell Simulation: A Grand Challenge of the 21st Century, Trends
in Biotechnology, 19 (2001), 205–210.

This article was processed using the LATEX macro package with LLNCS style


