
Bio-Inspired Computing Paradigms
(Natural Computing)

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 7014700 Bucureşti, Romania, and

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Abstract. This is just a glimpse to the fruitful and constant preoccu-
pation of computer science to try to get inspired by biology, at various
levels. Besides briefly discussing the main areas of natural computing (ge-
netic algorithms–evolutionary computing, neural computing, DNA com-
puting, and membrane computing), we mention some of the hopes and
the difficulties/limits of this enterprise.

1 From Turing to Present Days

In some sense, the whole history of computer science is the history of a series of
continuous attempts to discover, study, and, if possible, implement computing
ideas, models, paradigms from the way nature – the humans included – com-
putes. We do not enter here into the debate whether or not the processes taking
place in nature are by themselves “computations”, or we, homo sapiens, inter-
pret them as computations, but we just recall the fact that when defining the
computing model which is known now as Turing machine and which provides
the standard by now definition of what is computable, A. Turing (in 1935–1936)
explicitly wanted to abstract and model what a clerk in a bank is doing when
computing with numbers. One decade later, McCullock, Pitts, Kleene founded
the finite automata theory starting from modelling the neuron and the neural
nets; still later, this led to the area called now neural computing – whose roots
can be found in unpublished papers of the same A. Turing (see also Section 3
below). Genetic algorithms and evolutionary computing/programming are now
well established (and much applied practically) areas of computer science. One
decade ago, the history making Adleman’s experiment of computing with DNA
molecules was reported, proving that one can not only get inspired from biology
for designing computers and algorithms for electronic computers, but one can
also use a biological support (a bio-ware) for computing. In the last years, the
search of computing ideas/models/paradigms in biology, in general in nature,
became explicit and systematic under the general name of natural computing1.
1 As a proof of the popularity of this syntagm, it is of interest to point out that there are

conferences with this topic explicitly included in their scope, a new journal with this name



This trend of computer science is not singular, many other areas of science
and technology are scrutinizing biology in the hope (confirmed in many cases)
that life has polished for billions of years numerous wonderful processes, tools,
and machineries which can be imitated in domains apparently far from biology,
such as materials and sensor technology, robotics, bionics, nanotechnology.

2 A Typical Case: Evolutionary Computing

In order to see the (sometimes unexpected) benefits we can have in this frame-
work, it is instructive to examine the case of genetic algorithms. Roughly speak-
ing, they try to imitate the bio-evolution in solving optimization problems:
the space of candidate solutions for a problem are encoded as “chromosomes”
(strings of abstract symbols), which are evolved by means of cross-overing and
point mutation operations, and selected from a generation to the next one by
means of a fittness mapping; the trials to improve the fitness mapping continue
until either no essential improvement is done for a number of steps, or until a
given number of iterations are performed. The biological metaphors are numer-
ous and obvious. What is not obvious (from a mathematical point of view) is
why such a brute force approach – searching randomly the space of candidate
solutions, with the search guided by random cross-overings and point mutations
– is as successful as it happens to be (with a high probability, in many cases, the
Genetic Algorithms provide a good enough solution in a large number of applica-
tions). The most convincing “explanation” is probably “because nature has used
the same strategy in improving species”. This kind of bio-mystical “explanation”
provides a rather optimistic motivation for related researches.

3 Neural Computing

A special mentioning deserves another “classic” area included nowadays in natu-
ral computing, namely neural computing. In short, the challenge is now to learn
something useful from the brain organization, from the way the neurons are
linked; the standard model consists of neuron-like computing agents (finite state
machines, of very reduced capabilities), placed in the vertices of a net, with nu-
merical weights on edges, aiming to compute a function; in a first phase, the net
is “trained” for the task to carry out, and the weights are adjusted, then the net
is used for solving a real problem. Pattern recognition problems are typical to
be addressed via neural nets. The successes (and the promises) are comparable
with those of genetic algorithms, without having a similarly wide range of ap-
plications. However, the brain remains such a misterious and efficient machinery
that nobody can underestimate the progresses in any area trying to imitate the

is published by Kluwer, a new series of the Elsevier Theoretical Computer Science journal
is devoted to natural computing, a new series of books published by Springer-Verlag and a
column in the Bulletin of the European Association for Theoretical Computer Science also
have this name.



brain. (It also deserves to mention the rather interesting detail that Alan Tur-
ing himself, some years after introducing Turing machines, had a paper where
he proposed a computing device in the form of a net of very simple computing
units, able to learn, and then to solve an optimization problem – nothing else
than neural computing avant la lettre. Unfortunately, his paper remained un-
published and was only recently reevaluated; see http://www.AlanTuring.net
and [12] for details.)

4 DNA Computing

Coming back to the history making Adleman’s experiment mentioned above [1],
it has the merit of opening (actually, confirming, because speculations about us-
ing DNA as a support for computations were made since several decades, while
theoretical computing models inspired from the DNA structure and operations
were already proposed in eighties, see, e.g., [7]) a completely new research vista,
not looking for better algorithms for existing computers, but for a new type of
hardware, based on bio-molecules. Specifically, Adleman has solved in a lab, just
handling DNA by techniques already standard in bio-chemistry, a computation-
ally hard problem, the well-known Hamiltonian Path problem. The problem is
NP-complete, among those considered intractable for the usual computers, but
Aldeman has solved it in linear time (the number of lab operations carried out
was linear in terms of the number of nodes). The graph used in the experiment
had only 7 nodes, a toy-problem by all means, while the actual working time was
of seven days, but the demo (in terms of [6]) was convincing: we can compute
using DNA!

It is worth emphasizing the fundamental novelty of this event: the dream is
to find an essentially new type of computers – sometimes called “wet computer”.
The great promise is to solve hard problems in a feasible time, by making use
of the massive parallelism made possible by the very compact way of storing
information on DNA molecules (bits at the molecular level, with some orders of
efficiency over silicon supports). In this way, billions of “computing chips” can
be accommodated in a tiny test tube, much more than on silicon. The possible
(not yet very probable for the near future. . . ) “DNA computer” also has other
attractive features: energetical efficiency, reversibility, evolvability.

5 The Marvelous DNA Molecule

For the practical computer science, DNA computing fuels several hopes, mainly
related to the massive parallelism mentioned above; on this basis, we can simulate
non-determinism (which is anyway present in biochemistry), so that one can
address in this framework computationally hard problems, with the possibility
to push with some steps the feasibility barriers – at least for certain problems.

There are mentioned also other good features of DNA as a support for com-
putations (energy efficiency, stability, reversibility of certain processes), but we



switch here to a purely theoretical observation, which is simply spectacular from
a general computability point of view: in certain sense, all Turing computable
languages are “hidden” in the DNA molecules, and any particular language can
be “read off” from this blue print of computability by the simplest transducer, the
finite state one!.

This newspaper-style statement has a precise mathematical counterpart, first
mentioned in [11]. Everything starts with an old characterization of recursively
enumerable (RE) languages, as the projection of the intersection of a twin-shuffle
language with a regular language. However, both the projection and the inter-
section with a regular language, and the decodification of the symbols of an
arbitrary alphabet from codes over a binary alphabet can be computed by a
sequential transducer. Therefore, every RE language is the image through a se-
quential transducer of the twin-shuffle language over the alphabet with two sym-
bols. Now, a clever observation from [11] relates the twin-shuffle language over
two symbols with “readings” of DNA molecules (one goes along the two strands
of a molecule, step by step but with non-deterministically varying speed, and
producing a single string, by interleaving the visited nucleotides; this reading can
be done either started from the same end of a double stranded molecule, or from
opposite ends, for instance, according to the directionality of the two strands).
Thus: every RE language can be obtained through a finite state transducer from
the pool of readings of DNA molecules! The double stranded data structure,
with the corresponding nucleotides related by the complementarity relation, is
intrinsically universal from a computational point of view!

This observation (a presentation and variants of the mathematical details
can also be found in [10]) should bring to theoretical DNA computing a similar
degree of optimism as genetic algorithms bring to practical natural computing.

6 Recent Attempts

Another component of this general intellectual enterprise is membrane comput-
ing, which starts from the observation that the cell is the smallest living thing,
and at the same time it is a marvellous tiny machinery, with a complex structure,
an intricate inner activity, and an exquisite relationship with its environment –
the neighboring cells included. Then, the challenge is to find in the structure and
the functioning of the cell those elements useful for computing. Distribution, par-
allelism, non-determinism, decentralization, (non)synchronization, coordination,
communication, robustness, scalability, are only a few keywords related to this
challenge. For instance, a problem which cannot be easily solved in terms of
silicon engineering, but which was misteriously and very efficiently solved by
nature at the level of the cell is related to the coordination of processes, the con-
trol pathways which keep the cell alive, without a high cost of coordination (in
parallel computing the communication complexity is sometimes higher than the
time and space complexity). Then, interesting questions appear in connection
with the organization of cells into tissues, and this is also related to the way the
neurons cooperate in the brain.



Similar issues are addressed by several other recent research directions
belonging to natural computing, for instance, trying to learn computing
ideas/models/paradigms from the way certain colonies of insects are organized
and work together, the way bacteria populations develop in a given environ-
ment, the way flocks of birds maintain their “organization”, the (amazing) way
ciliates unscramble their chromosomes after reproduction [5], and so on. Most
of these areas still wait for producing a demo, many of them are still in the
stage of “craftsmanship”, with ad-hoc ideas involved in ad-hoc models/tools han-
dling ad-hoc problems, but the whole approach is both intellectually appealling
and practically promising (sometimes through “by-products”, useful for biology,
medicine, robotics, etc).

7 Hopes and Limits

As mentioned above, there are many convincing achievements of natural comput-
ing, many bio-inspired areas of computer science have important practical appli-
cations, or/and they are appealing from a theoretical point of view. Sometimes,
the usefulness of the bio-inspired models and tools has a somewhat misterious
source/explanation, in other cases the matter is simpler and more transparent.
Anyway, we try here to compose a list of attractive features of this attempt,
of learning from the living nature to the benefit of computer science (most of
these features can be called “hopes”, as not being confirmed by current natural
computing): in many cases, we look for ideas for improving the use of the ex-
isting computers, for new types of algorithms; in other cases, a new hardware is
sought for; as new ideas to be found in nature, we can learn new data structures
(such as the double strand with complementary pairs of symbols), or new op-
erations (crossovering and point mutations, splicing, annealing, and so on and
so forth); bio-computing can make available a massive parallelism, reversible
computations, non-determinism, energy efficiency, maybe also evolvable hard-
ware/software, self-healing, robust; new ideas learnt from biology can lead to a
complete reconstruction of computability theory, on non-standard bases (e.g.,
using the splicing operation, quite different from the rewriting operation, which
is standard in computability); nature can suggest new computer architectures,
ways to cope with such difficulties of parallel computing as communication,
(de)centralization, synchronization, controlling distributed processes, etc.

The list might be probably continued, but we want to make here a point
which we find important: when discussing about new computing paradigms in-
spired from biology, most authors are enthusiastic or even over-enthusiastic. For
promoting a young research area, this is understandable – but natural computing
is no longer a young area. A more lucid position is similarly helpful as a blindly
optimistic one, so that we balance here the previous list with another one, of
difficulties of implementing bio-ideas in computer science: nature has (in certain
sense, unlimited) time and resources, nature is cruel, kills what is not fit (all
these are difficult to incorporate in computers, let them be based on electronic
hardware or on a hypothetic bio-ware); nature has other goals than computing;



many bio-chemical processes have a degree of non-determinism which we cannot
afford in our computations; the life processes are complex, with a high degree of
redundancy; biology seems to deal with non-crisp mathematics, with probabil-
ities, with fuzzy estimations, which are not fully manageable in computations.
And, last but not least, maybe we dream too much even from a theoretical
point of view. First, the space-time trade-off specific to molecular computing,
cannot redefine complexity classes, and it is sometimes too costly in space (in
the size of used bio-ware). Then, M. Conrad [4] warned us that programmability
(universality), efficiency, and evolvability are three contradictory features of any
computing model. . . Both these observations indicate that there is no free lunch
in computer science, even in the bio-inspired one.

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems.
Science, 226 (November 1994), 1021–1024.

2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell, 4th ed. Garland Science, New York, 2002.

3. J.A. Anderson, An Introduction to Neural Networks. The MIT Press, Cambridge,
MA, 1996.

4. M. Conrad, The Price of Programmability. In The Universal Turing Machine: A
Half-Century Survey (R. Herken, ed.), Kammerer and Unverzagt, Hamburg, 1988,
285–307.

5. A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg, Computations
in Living Cells. Springer-Verlag, Berlin, 2004.

6. J. Hartmanis, About the Nature of Computer Science. Bulletin of the EATCS, 53
(June 1994), 170–190.

7. T. Head, Formal Language Theory and DNA: An Analysis of the Generative Ca-
pacity of Specific Recombinant Behaviors. Bulletin of Mathematical Biology, 49
(1987), 737–759.

8. J.H. Koza, J.P. Rice, Genetic Algorithms: The Movie. MIT Press, Cambridge,
Mass., 1992.

9. Gh. Păun, Computing with Membranes: An Introduction. Springer-Verlag, Berlin,
2002.

10. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms. Springer-Verlag, Berlin, 1998.

11. G. Rozenberg, A. Salomaa, Watson-Crick Complementarity, Universal Computa-
tions, and Genetic Engineering. Techn. Report 96–28, Department of Computer
Science, Leiden Univ., Oct. 1996.

12. C. Teuscher, Alan Turing. Life and Legacy of a Great Thinker. Springer-Verlag,
Berlin, 2003.

This article was processed using the LATEX macro package with LLNCS style


