
Cellular Meta-Programming
Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi

gabriel@iit.tuiasi.ro

Outline

What can we learn from the cell (behaviour)?

On Meta-Programming (structural, behavioural)

Briefly on P Systems

More about Maude

Reflection in Rewriting Logic

Cellular Meta-Programming over Membranes

Membranes Specification

Example, Software Experiments

Conclusion

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.1/28

What can we learn from the cell?

the distribution of the tasks among the cell
compartments

the high adaptability and flexibility of the cell
behaviour

The adaptability of cells to the changing environment requires sophisticated processing

mediated by interacting genes and proteins. A cell is able to adapt its execution

according to various developmental and environmental stimuli, causing corresponding

changes in its behaviour. We refer to this adaptability in terms of meta-programming.

We try to put together meta-programming and cell com-

partments in a formal computational framework, describing

adaptable executions of membranes specifications.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.2/28

On Meta-Programming
adaptable executions are generated in computer
science by meta-programming;

meta-programming is the act of writing programs
able to manipulate themselves as their data, allowing
execution modification;

reification and reflection;

reification is the mechanism of encoding execution
states as data; at run-time a program is used as a
representation and made available (to the program)
as ordinary data.

cell is able to modify its activity and to change its own
code at run-time –> this behaviour is more than
reification.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.3/28

Software Reflection
in programming, reflection is defined as the ability of
a program to manipulate the encoding of the state of
the program during its own execution;

the mechanisms are both structural and behavioural;

structural reflection is the ability to work with the
structures and processes of a programming system
within the programming system itself (easier to
implement - Lisp, Smalltalk, Java have structural
reflection mechanisms);

the behavioural reflection allows a program to modify,
even at run-time, its own code;

cell adaptability is close to the behaviour reflection.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.4/28

Reflection over specifications
We provide executable specifications in Maude of the
abstract model of the cell compartments (P systems);

Maude is a rather mathematical language, and a
software system supporting reflection; it has
meta-logical axioms for reflection, as well as for
computational strategies in rewriting logic;

Membrane systems represent a new formal model of
parallel and distributed computing inspired by cell
compartments; the membranes determine regions
where objects and evolution rules can be placed; the
objects evolve according to the rules of each region,
and the regions cooperate in order to maintain the
proper behaviour of the whole system.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.5/28

Briefly on P Systems

Π = (O, µ, w1, . . . , wm, R1, . . . , Rm, io)

(i) O is an alphabet of objects;

(ii) µ is a membrane structure consisting of labelled
membranes;

(iii) wi are multisets over O associated with the regions
defined by µ;

(iv) Ri are finite sets of evolution rules of the form
ab → a(c, in2)(c, out);

(v) i0 specifies the output membrane of Π or the outer
region.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.6/28

Membranes

Elementary membrane M = (RM , wM)
A computation step transition is defined as a rewriting
rule

x1 → y1, . . . , xn → yn ∈ RM , z is RM -irreducible

x1 . . . xn ⇒ y1 . . . ynz
(1)

z is RM -irreducible whenever there does not exist rules in RM applicable to z

Composite membrane (M1, . . . , Mk, RM , init), where
Mi(1 ≤ i ≤ k) is an elementary or composite membrane,
and init is its initial multiset of form (w, (w1, . . . , wk)).

w ⇒ w′, w1 ⇒ w′

1, . . . , wn ⇒ w′

n

(w, (w1, . . . , wk)) ⇒ (w′, (w′

1, . . . , w
′

k))
(2)

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.7/28

Membranes Computation

objects of the membranes are the subject of local
evolution rules that evolve simultaneously;

a sequence of computation steps represents a
computation; a computation is successful if this
sequence is finite, namely there is no rule applicable
to the objects present in the last configuration;

in a final configuration, the result of a successful
computation is the total number of objects present in
the skin membrane.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.8/28

More about Maude

Maude is a specification language with a strong
mathematical foundation (OBJ family)

There is a software system able to execute Maude
specifications http://maude.cs.uiuc.edu

Basic programming statements: equations,
membership assertions, and rewriting rules.

Functional module: only equations and membership
assertions

System module = Functional module + (multiset)
rewriting rules specifying local transitions in a
possibly concurrent system
(there is no assumption that all rewriting sequences will lead to the same final

result, and for some systems there may not be any final states).
Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.9/28

Specification of the P Systems

each P system Π is represented as a collection of
Maude modules such that each membrane is
represented by a corresponding Maude system
module; sort Obj is for object names, and its subsort
Output is for results; a sort Soup is for the multisets
of objects, and a sort Config for the states of a P
system;

an expression of the form 〈M | S〉 represents a
configuration corresponding to an elementary
membrane M with its multiset S, and a configuration
〈M | S; C1, . . . , Cn〉 corresponds to a composite
membrane M in state S and with the component i

having the configuration Ci.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.10/28

Objects and Configurations in Maude
fmod OBJ is

sorts Obj Output .
subsort Output < Obj .
ops a b c d : -> Obj .
mb b : Output .
mb c : Output .

endfm

fmod CONFIG is
inc OBJ .
inc QID .
sorts Soup Config .
subsort Obj < Soup .
op empty : -> Soup .
op __ : Soup Soup -> Soup [assoc comm id: empty] .
op <_|_> : Qid Soup -> Config .
op <_|_;_> : Qid Soup Config -> Config .
op _‘,_ : Config Config -> Config [assoc comm] .

endfm

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.11/28

Reflection in Rewriting Logic

Rewriting logic is reflective:
there is a universal rewriting specification U such that

M ` t → t′ iff U ` 〈M, t〉 → 〈M, t′〉,

A reflective tower:

M`t→t′ iff U`〈M, t〉→〈M, t′〉 iff U`〈U , 〈M, t〉〉→〈U , 〈M, t′〉〉 · · ·

This concept is supported in Maude through a built-in
module called META-LEVEL.

This module has functions like metaReduce(SP , t) returning the representation of the

reduced form of a term t using the equations in the module SP .

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.12/28

Evaluation Strategies and META-LEVEL

Evaluation strategies control the positions in which
equations can be applied, giving the user the
possibility of indicating which arguments to evaluate
before simplifying a given operator (using the
equations);

Reflection allows a complete control of the rewriting
(execution) using the rewriting rules in the theory;
reflective computations allow the link between
meta-level and the object level, whenever possible;

META-LEVEL module can be extended by the user to
specify strategies of controlling the rewriting process;
we use META-LEVEL in order to provide a clear
(algorithmic) description of the “maximal parallel
rewriting” strategy given by maxParRew.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.13/28

Cellular Meta-Programming
using maxParRew as a transition step between
meta-level configurations, we then provide an
operational semantics of the membrane systems;

using the power given by the reflection tower in
Maude, we define operations over modules and
strategies to guide the deduction process;

finally we can use a meta-metalevel to analyze and
verify the properties of the membrane systems.

This description of the membrane systems based on
capabilities given by reflection is called cellular
meta-programming; it could become a useful paradigm
for further investigations (in system biology and UPP).

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.14/28

Maximal Parallel Rewriting
Maude semantics of a module M is not the same with the
P system semantics –> we must associate with M the
new semantics based on the maximal parallel rewrite
relation. We use META-LEVEL to define the “maximal
parallel rewriting” strategy, defining the P system
semantics at the meta-level.

Meta-level

P system

Maximal Parallel Rewriting

Strategy

Maude specification of the
Object level

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.15/28

P System Semantics
For the elementary membranes, a computation step is
defined as

S ⇒ S′

〈M | S〉 ⇒ 〈M | S ′〉
(3)

where S ⇒ S′ is defined in (1). S ⇒ S′ is not the ordinary
rewriting defined by M , but they are related:

S ⇒ S′ iff S
+
−→RM

S′ s.t. maxParCons(RM , S, S′)

where +
−→RM

is the ordinary rewriting defined by RM , and

maxParCons(RM , S, S′) represents the constraints defin-

ing the maximal parallel rewriting strategy over RM .

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.16/28

P System Semantics
1. if S = S′, then maxParCons(RM , S, S) holds iff S is

RM -irreducible;

2. if S 6= S′, then maxParCons(RM , S, S′) holds iff there
exists S1, S

′

1, ` → r ∈ RM such that S = ` S1, S′ = r S′

1,
and maxParCons(RM , S1, S

′

1).

Since maxParCons has the set of rules of the module M

as parameter, it follows that it can be decided only at the
meta-level.
The transition between configurations for composite
membrane is defined as:

S ⇒ S′, C1 ⇒ C ′

1, . . . , Ck ⇒ C ′

k

〈M | S; C1, . . . , Ck〉 ⇒ 〈M | S′; C ′

1
, . . . , C ′

k
〉

(4)

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.17/28

Dynamic Adaptive Processes

the maximal parallel rewriting is a rewriting strategy
depending on the topology + rules of the P system

it is an dynamic adaptive process,

and it can be defined only at meta-level;

Maude is reflective, so the meta-levels are inside the
system and allow dynamic strategies

therefore Maude is an appropriate meta-
programming platform for implementing the
membrane systems.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.18/28

Example, Software Experiments
We consider a simple example of membrane system, and
then describe and execute its Maude specification. We
consider a P system generating symbols b and c with the
properties that the number of c’s is double of the number
of b’s, and the total number of b’s and c’s is a multiple of 6.

We present only some important steps of the specifica-

tion, and the results of executing this specification using

Maude.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.19/28

Example, Software Experiments

(mod SKIN is

inc CONFIG .

op init : -> Soup .

eq init = a a .

rl [’SKIN] : a => a b c c .

rl [’SKIN] : a a => empty .

endm)

The structure of the system is specified in the initial
configuration. The module describing Π1 is:
(mod PSYS is

inc SKIN .

op initConf : -> Config .

eq initConf = < ’SKIN | init > .

endm)

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.20/28

Example, Software Experiments
The rewriting rules defining the computation of P
systems are included in a Maude system module called
COMPS. We can use various Maude commands in order
to make experiments with the P system specification. For
instance, we use the command rew to see the result of
maximal parallel rewritings:
Maude> select COMPS .

Maude> (down PSYS : rew rwf(getTerm(metaReduce(up(PSYS),

up(PSYS, initConf)))) .)

rewrites: 4784 in 130ms cpu (140ms real) (36800 rewrites/second)

result Config :

< ’SKIN | a a b b b b b b c c c c c c c c c c c c >

Maude>

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.21/28

Software Experiments
The rew command with a limited number of steps, is not
useful because the number of rewriting steps in Maude is
not the same with the number of computation steps of P
systems. Therefore, the rewriting process is restricted by
the configuration size:
crl rwf(X) => rwf(maxParRew(X))

if (X :: Term) /\ (#(X) < 20) .

crl rwf(X) => X if #(X) >= 20 .

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.22/28

Software Experiments
We consider a module METACOMPS defining a function
out which removes the non-output objects, and a
function #() which counts the occurrences of an object
into a configuration. Since these functions are applied to
configurations obtained with metaRewrite command,
module METACOMPS is defined at the meta-metalevel.
(select METACOMPS .)

(down PSYS : down COMPS : red getTerm(metaRewrite(up(COMPS),

up(COMPS, rwf(getTerm(metaReduce(up(PSYS),

up(PSYS, initConf))))), 100)) .)

rewrites: 26614 in 150ms cpu (140ms real) (177426 rewrites/second)

result Config :

< ’SKIN | a a b b b b b b c c c c c c c c c c c c >

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.23/28

Software Experiments
The command down and the function up are used to
move between two successive levels of the reflection
tower. For instance, down COMPS : interprets the result
returned by red in the module COMPS. The function call
up(PSYS, initConf) returns the representation at the
meta-level of the term initConf defined in PSYS. If we
wish to investigate the properties of the result, then we
may proceed as follows:
(mod PROOF is

inc METACOMPS .

op ql : -> QidList .

eq ql = out(...getTerm(metaRewrite(up(COMPS),

up(COMPS,getTerm(metaReduce(up(PSYS),up(PSYS,initConf)))),100)))) .

endm)

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.24/28

Software Experiments
We can check now that the number of objects c is double
of the number of objects b, and the total number of b’s
and c’s is a multiple of 6:
Maude> (red #(ql, ’’c) == 2 * #(ql, ’’b) .)

rewrites: 322 in 230ms cpu (230ms real) (1400 rewrites/second)

reduce in PROOF :

#(ql,’’c)== 2 * #(ql,’’b)

result Bool :

true

Maude> (red (#(ql, ’’c) + #(ql, ’’b)) rem 6 .)

rewrites: 326 in 10ms cpu (10ms real) (32600 rewrites/second)

reduce in PROOF :

(#(ql,’’c)+ #(ql,’’b))rem 6

result Zero :

0

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.25/28

Analysis and Verification
Maude has a collection of formal tools supporting
different forms of logical reasoning to verify program
properties, including a model checker to verify temporal
properties of finite-state system modules.

Maude specification of the

Meta-level

Meta-metalevel

Object level

(maximal parallel rewriting)

Computation

Analysis and verification

P systemUnconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.26/28

Conclusion

We provide executable specifications of P systems.

Starting from the cells ability to react and change
their behaviour at run-time, we translate this
adaptability in a meta-programming feature of these
executable specifications.

Cellular meta-programming of the membrane
systems and a reflective specification language
based on rewriting.

The approach exploits the reflection property of the
rewriting logic.

Availability of an automated verification tool for the P
systems.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.27/28

Research Directions

At least two possible further research lines:

1. The mechanism of reflection could describe the
biological entities ability to react and change their
behaviour according to various developmental and
environmental stimuli.

2. Further research will investigate how to integrate
directly the P systems aspects with the
meta-programming paradigm, trying to harmonize a
nice theory and a powerful software technique.

Unconventional Programming Paradigms, September 2004, Mont Saint-Michel, France G. Ciobanu: Cellular Meta–Programming – p.28/28

	Outline
	What can we learn from the cell?
	On Meta-Programming
	Software Reflection
	Reflection over specifications
	Briefly on P Systems
	Membranes
	Membranes Computation
	More about Maude
	Specification of the P Systems
	hspace {-1cm}Objects and Configurations in Maude
	Reflection in Rewriting Logic
	hspace {-1cm}Evaluation Strategies and 	exttt {META-LEVEL}
	Cellular Meta-Programming
	Maximal Parallel Rewriting
	P System Semantics
	P System Semantics
	Dynamic Adaptive Processes
	Example, Software Experiments
	Example, Software Experiments
	Example, Software Experiments
	Software Experiments
	Software Experiments
	Software Experiments
	Software Experiments
	Analysis and Verification
	Conclusion
	Research Directions

